




# **Solutions for indoor air pollution during the** herding season in Bumthang, Bhutan

Charles Minicucci<sup>1</sup>, Pema Wangchuk<sup>2</sup> (Presenting Author), Tor Charnholm<sup>3</sup>, Sonam Gyeltshen<sup>2</sup>, Damchoe Wangchuk<sup>2</sup>, Tashi Dorji<sup>2</sup>, Kuenzang Chhezom<sup>4</sup>, Krystal Pollitt<sup>1</sup> <sup>1</sup>Yale School of Public Health (EHS), <sup>2</sup>Wangdichholing General Hospital, <sup>3</sup>Yale College, <sup>4</sup>Khesar Gyalpo University of Medical Sciences of Bhutan



**Tripod Fire** 

Bukhari

### INTRODUCTION

- Domestic biomass burning is a major environmental health challenge in the Global South – and open tripod fires pose a considerable health risk
- Rural households in Bhutan predominantly burn biomass for heat and energy and despite major national electrification efforts, many mountain communities do not have access to any infrastructure services during their nomadic seasons

## **OBJECTIVES**

- Explore the indoor air pollutant (IAP) exposure profile of the nomad communities of Bumthang, Bhutan
- Conduct an IAP-relevant health assessment for these communities
- Meet a critical environmental health need expressed by these communities in the form of a stove distribution effort
- Further investigate the energy behaviors and environmental health needs of these communities

#### **METHODS**

#### **INNOVATIVE ASPECTS**

research

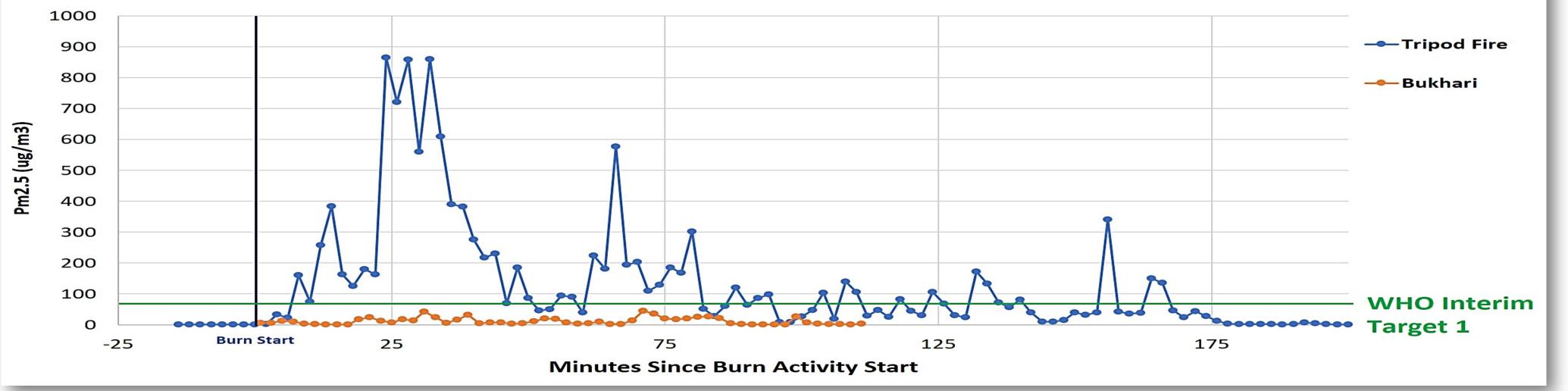
Use of FreshAir clips

constrained setting

- Low-cost 2.5-um particulate matter (PM<sub>2.5</sub>) active sensors
- Passive air pollutant samplers
- Community questionnaires
- Clinical evaluations of community members

#### **RESULTS**

**Table 1.** Peak and average PM<sub>2.5</sub> concentrations measured during field work burn scenarios.


**Table 2.** Crude assessment of time-weighted average
 daily inhalation exposure to both total PM<sub>25</sub> mass concentration and total PAH volumetric concentration

Use of low-cost air pollution sensing technology in a remote and resource-

Demonstrate real value of new low-cost sensors for community-based

| Metric                                              | Metric | Bukhari (n=4) | Tripod Fire (n=22) | concentration and total PAH volumetric concentration |      |                                |                                |                   |                         |
|-----------------------------------------------------|--------|---------------|--------------------|------------------------------------------------------|------|--------------------------------|--------------------------------|-------------------|-------------------------|
| Fine Particulate                                    | Min    | 2.1           | 409.2              |                                                      | Hour | Mean<br>PM <sub>2.5</sub> m.c. | Mean<br>PM <sub>2.5</sub> m.c. | Mean PAH<br>v.c.  | Mean PAH<br>v.c. (fire) |
| Matter Peak                                         | Med    | 46.2          | 1318.6             |                                                      |      | (bukhari)                      | (fire)                         | (bukhari)         |                         |
| Concentration                                       | Mean   | 43.2          | 1263.3             | Living                                               | 11   | 11.77                          | 192.77ug/                      | 0.0876            | 0.1229                  |
| (ug/m <sup>3</sup> )                                | Max    | 78.2          | 2341.9             | space                                                |      | ug/m <sup>3</sup>              | m <sup>3</sup>                 | mg/m <sup>3</sup> | mg/m <sup>3</sup>       |
| Fine Particulate<br>Matter Average<br>Concentration | Min    | 0.1           | 25.6               | Non-living                                           | 1.5  | 449.77                         | 449.77ug/                      | 0.8674            | 0.8674                  |
|                                                     | Med    | 13.5          | 250.5              | space                                                |      | ug/m <sup>3</sup>              | m <sup>3</sup>                 | mg/m <sup>3</sup> | mg/m <sup>3</sup>       |
|                                                     | Mean   | 11.7          | 344.6              | TWA                                                  | 24   | 33.4688                        | 116.4271                       | 0.0944            | 0.1105                  |
| (ug/m <sup>3</sup> )                                | Max    | 19.7          | 1101.9             |                                                      |      | ug/m <sup>3</sup>              | ug/m <sup>3</sup>              | mg/m <sup>3</sup> | mg/m <sup>3</sup>       |

#### Comparison between Tripod Fire and Bukhari, Identical Microenvironment



**Figure 1.** Comparison of real-time indoor fine particulate matter mass concentrations from an open fire and a *bukhari*.

# **CONCLUSIONS**

- Bukhari demonstrated vastly superior pollution performance than tripod fires, approaching WHO interim guidelines
- Community members have unacceptably high rates of IAP exposure and health problems possibly associated with IAP
- Community members are were exposed to high levels of several priority pollutants, including PAHs as well as non-combustionassociated compounds such as pesticides, phthalates, and flame retardants.
- Preliminary data warrants a more rigorous, deeper, and broader environmental health risk assessment for these and similar communities
- Evidence of acceptability and effectiveness justifies broader stove distribution efforts
- Methodological abilities demonstrated in difficult research context; evidence in support of broader, systematized community IAP monitoring
- Good community and researcher partnerships built for future work

**Special thanks** to Mr. Sonam for field logistics, the WCGH staff for their hospitality, and the nomads of Bumthang for their immense generosity.